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1. Introduction. Clenshaw and Curtis [1] have proposed a quadrature scheme 
based on the "practical" abscissas xi = cos (iir/n), i = O(1)n and they have also 
discussed the estimation of error of the quadrature formula. Elliott [2] has dis- 
cussed the estimation of truncation errors in the two Chebyshev series approxima- 
tions for a function, one based on the practical abscissas and the other on the 
"classical" abscissas xi = cos (2i + 1)7r/(2n + 2), i = O(1)n. Elliott also obtains 
asymptotic error estimates for the Lagrangian quadrature formulas based on these 
two sets of points. Recently, Fraser and Wilson [3] have discussed the estimation 
of error of the Clenshaw-Curtis quadrature and they give a simple formula for the 
calculation of the error in terms of the function-values. 

In the present note we obtain error estimates for the Clenshaw-Curtis quad- 
rature applied to functions analytic on the interval of integration [-1, 1]. We also 
obtain error estimates for the quadrature formula based on the classical abscissas. 

2. The Clenshaw-Curtis Quadrature Formula. Let TI'(x) denote the Lagrangian 
interpolation polynomial for f(x) at the practical abscissas xi = cos (ir/n), 
i = O(l)n, and let 4An(x) denote the error of interpolation 

(1) 4n(x) = f(x) - TnW 

If 
n I/ 

(2) 'n (x) = E Bk,nTk (X) 
k-O 

where Tk(x) = cos (k arc cos x), Chebyshev polynomial of the first kind of degree 
k, and the double prime on the summation sign indicates that the first and the last 
terms are to be halved, then the coefficients Bk,n are given by 

2 n it 

Bk,n = E fX i)' k(X i 3) n io 

2 n it 

= - f (x i) 1i (Xk) 
fl i=o 

since Tk(Xi) = Ti(Xk), and xi = cos (iir/n), i = O(1)n. An elegant method for 
the evaluation of the coefficients Bkn is described by Clenshaw [4]. 

Let C be a closed contour enclosing the interval [-1, 1] in its interior and let 
f(z) be regular within C. Since the practical abscissas are the zeros of the poly- 
nomial Tn+i(x) - T'n-,(x), the error ,pn(x) of the Lagrange interpolation for f(x) 
at these abscissas can be expressed by a contour integral (Davis [5, Theorem 
3.6.1]) as 
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_ [Tn+(x) - Tn-1(x)] J f(z)dz (4) 
Zt -(x) 2wi (z - x)[Tn+1(z) -Tn-1(Z) 

for x E [- 1, 1]. If n is even, the integration of (2) gives 

/'P'\' P 1 n-1" =-2w93,. 
J ~~~~~~~~~~~~~~~ ~~~~2 

-1 -i ~~~~j-o 4j - 1 

Substituting for B2j,n from the first of the relations (3), the Clenshaw-Curtis ap- 
proximate integration formula can be rewritten as 

I*1 n Ad 

(6) J f(x)dx? E Xif(xi), 
-1 i=O 

where the weights Xi are given by 

(7) X=2 n/2, (-2)T2,(x i) 
(7) X i 421 -for i O(1bn. 

The error of the Clenshaw-Curtis quadrature formula is given by 

(8) En(t) = f1 An(x)dx = - f [Qn+4(z) - Qn(z)J f(dz cr [Tn+l (Z) - Tn-1 (Z) 

where we have put 

(9) Qn*(z) f' 
2 

T xd 

Equation (9) defines Qn*(z) as a single-valued analytic function in the z-plane with 
the interval [-1, 1] deleted. 

2.1. The Quadrature Formula Based on the Classical Abscissas. Let cFn(x) denote 
the Lagrange interpolation polynomial for the abscissas xi = cos (2i + 1)7r/(2n + 2), 
i = 0(1)n which are the zeros of Tn+,(x). The computation of the polynomial 
In(x) has been discussed in detail by Elliott [2]. 

To describe the corresponding quadrature formula, let 

n I 
(10) Pn (x) = Ej Ak,nTk (X) 

k=o 

where the prime on the summation sign indicates that the first term is to be halved. 
The coefficients Akn are given by 

c)n 
(11) Akn = 2 1E f(xi)Tk(Xi) for i = 0(1)n, 

n+ 1 i-ox)k~~ 

where xi = cos (2i + 1)r/(2n + 2) for i = 0(1)n. Now, the integration of (10) 

gives the quadrature formula based on these abscissas as 

f f(x)dx c |f (x)dx 
k12) -1n-1 

>2 Akn(f Tk(x)dx). 

But 
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f Tk(x)dx = 2 if 1-k isodd 

-0 if 1-k is even. 

Since n is even, putting k = 2m, we get 
n2 

(2)A2m,nn (13) J (x)dx 
_ 

2 
-m=O 4m - 1 

Substituting for A2m,tn from (11), the above approximate integration formula can 
be put in the alternative form, 

[s1 n 

(14) J_ f(x)dx tE if(Xi) 
i=O 

where the weights ,ui are given by 

(15) ~~~~~2 n/2i (2)T2j(Xi) (15) yS= + = E (2tTiX) i = 0(1)n. 

Let 0n(x) = f(x) - cIn(x) denote the error of interpolation for f(x) at the 
classical abscissas. Then, On(x) may be expressed in terms of a contour integral as 

(16) 4n(x) = gT+1(X) f fz) (z) (16) On (X) ~~22ri c(Z - X)Tn+1 (Z) 

The error En(?P) for the quadrature formula (14) is given by 

(17) En () [1ckn(X)dx =ir> Qc -f(z) ) 

3. A Lemma for Qn*(z). Introduce the ellipse &, in the z-plane by 

z= +1(t ), +=pei8 O<A?< 2vr 
with foci at z = ?1 and whose sum of semiaxes is p (p > 1). 

We establish the following lemma. 

LEMMA. For z E S, 

(18) Qn* (z) = A 
1 E 2k X 

kid-[n2 
2 2k 

where 

Onn+2k+l = 2(n + 2k + 1)/(2n + 2k + 1)(2k + 1), 

[k] = greatest integer ? k. 
Proof. In (9), setting x = cos 0 and transforming to the i-plane, we get 

t-1 
V 

cos(nO) sill Odo 
(19) Q*(Z) = L 1 -2 cos OC' + 

C2' 

since Tn(cos 0) = cos nO. Now, 

sin- 0 21 2 - = Esin mO 
(20) [1 - 2 cos 0~- + E m i 
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The last series converges uniformly and absolutely for 0 ? 0 7r and for all 
I2j _ p > 1. Substituting (20) in (19), 

Qn* (Z) E -, nm 

where 

n*m= cos nO sin mOdO 
0 

2m 
= 2 2 if m-nisodd 

m -n 

=0 if m-niseven. 

The result follows by putting m - n = 2k + 1 and observing that k ? -[n/2] 
for n, m = 1, 2, 3, 

From the above lemma we deduce 
COROLLARY 1. For z G &p, 

(21) Qn+1(Z) = 
n 

+1,+2k 
k--[(n-1) /2] 

where 

an*+ln+2k = 2(n + 2k)/(2n + 2k + 1)(2k - 1) 

and 

an*+ln+2k < 2n/(2n + 1). 

COROLLARY 2. For z G ,,, 

(22) Qn+i(z) -Qn1(z) 2k 

where 

Xn*k = 8n(n + 2k)/[4(n + k)2 - 1][4k2 -1] 

and 

Xn*k < 8n2/(4n2 - 1) 

Proof. Subtracting (18) with n replaced by n - 1 from (21), 

Qn* 

~~~00 X * 

Q*+ (Z) - Q* (z) = n nk 

where 

nk= an-+l,n+2k -an-1,n+2k 

8n(n + 2k) 

[4(n + k)2 - 1](4k2 - 1) 

Also, 
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Xn*k =< = 2 -1 4n 2-_1 

4. Error Estimates. We now obtain error estimates for the Clenshaw-Curtis 
quadrature formula for all functions analytic on [-1, 1]. Simultaneously, we shall 
obtain estimates for En(4'). 

Let f(x) be analytic on [-1, 1]. Then, for some p > 1, f can be continued 
analytically so as to be single valued and regular in the closure of 8,p. In (8), 
taking the contour to be an ellipse 8, we have 

(23) En (T) )I - IQP Tn'+i(z) - Qn(z)j - f(z)j jdzj (23) jE~~~('I')j ? f 
jTn+ (Z) - Tn-1 (Z)jI 

Now, for n even, from (22) we have 

(8n 2 -2k 

|Qn+l (Z) - p 4-1 (Z) I 1 P /4 -E p 

_(8n \2 
<I i(p2 1-1 

and 

(dz (I ' p(pn - pnf1IdI 
jT~~~+i~~z) -- 

Making use of these results, from (23) we obtain the following theorem. 
THEOREM 1. Let f(x) be analytic on [-1, 1] and be continuable analytically so 

as to be single valued and regular in the closure of an ellipse gp with foci at z = +41 
and whose sum of semiaxes is p (p > 1). Then, for n even, 

(24) jEn(SI)j ? (4<2n ) 1) (Pn -n) 
where M(p) = max zeep If(z) I (or equivalently on I J = p). 

4.1. We next obtain an estimate for En(b). From (21), we obtain for n even, 

I Qn+ (i - P (2 ) E p_2 
(25) n + 

) k=-(n/2)+1 

< 2n) (p2 _1)- 

Now, taking the contour to be an ellipse gp in (17), we have 

(26) JEn OD)_ I? f n+l T)+ i(z)l 1J 

Employing (25), we obtain the following theorem from (26). 
THEOREM 2. Let f(x) satisfy the regularity conditions of Theorem 1. Then, for 

n even, 

(27) EEnO)J - (I 4 (p + p1) M (P) 
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Remarks. (i) From (24) and (27) it would appear that the estimate for En(b) 
is nearly half of that for En('i) for large n and p >> 1. For small values of n and 
p near 1, the estimate (27) is still less than the estimate (24). 

(ii) The estimates (24) and (27) obtained for the ellipse will be reasonably re- 
liable for large p, while these estimates are poor if p is near 1. 

(iii) For fixed n and varying ,, a "least conservative iqpxY_ hnivwi ewj 
tablished for these estimates for some p* (1 < p* < p). However, observe that if 
f(z) is entire, p* will be a value of p for which the right side of (24) or (27) is a 
minimum. 

5. Example. We illustrate the error estimate (24) for the Clenshaw-Curtis 
quadrature for the function f(x) = 1/(x + 4), and compare the estimates obtained 
with those given by Fraser and Wilson [3]. 

We select p = 7 for which f(z) = 1/(z + 4) is regular within the closed ellipse 
87. Now, on gp, 

f(Z)j I? M (p) = /21/ 

(4 + (15) -p)(p-(4-(lo) )) 

Thus, A1 (7) 2.33333347. 
The estimate (24) for the error of the Clenshaw-Curtis quadrature applied to 

this function is given by 

(28) E, q)I < 2 (7n 7 n) 
The exact value of fl1 dx/(4 + x) - 0.5108 2562. 

TABLE I 

estimates of 
n estimated error actual error Fraser-Wilson 

2 0.0042 3456 0.0002 8549 0.0166 6667 
4 0.0000 8230 0.0000 0125 0.0002 6882 
8 0.0000 00027 0.0000 0000 0.0000 0007 

The error estimated by (28) is compared in Table I with the actual error and 
the estimates given by Fraser and Wilson [3]. 

Department of Mathematics 
Indian Institute of Technology 
Hauz Khas, New Delhi-29 
India 

1. C. W. CLENSHAW & A. R. CURTIS, "A method for numerical integration on an automatic 
computer," Numer. Math., v. 2, 1960, pp. 197-205. MR 22 #8659. 

2. D. ELLIOrT, "Truncation errors in two Chebyshev series approximations," Math. Comp., 
v. 19, 1965, pp. 234-248. MR 31 #5313. 

3. W. FRASER & MI. W. WILSON, "Remarks on the Clenshaw-Curtis quadrature scheme," 
SIAM Rev., v. 8, 1966, pp. 322-327. MR 34 #3784. 

4. C. W. CLENSHAW, Chebyshev Series for Mathematical Functions, National Physical Labora- 
tory Mathematical Tables, Vol. 5, Department of Scientific and Industrial Research, H. M. S. O., 
London, 1962. MR 26 #362. 

5. P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963, pp. 67-68, 311- 
312. MR 28 #393. 


